

Advanced Office Automation

Session ???

Tamar E. Granor, Ph.D.

Tomorrow’s Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Phone: 215-635-1958

Email: tamar@tomorrowssolutionsllc.com

Web: www.tomorrowssolutionsllc.com

Overview
Getting started automating Office isn't that hard. Doing the simple tasks with each of the

servers is well-documented. But what comes next? This session will look at some more

complex Automation tasks, including responding to Office events, shutting down

abandoned servers, using Office's spelling checker, and more.

mailto:tamar@tomorrowssolutionsllc.com
http://www.tomorrowssolutionsllc.com/

They’re all the same, right?
Since Office is a suite, if you’ve automated one of the servers, you might assume that

working with the others is a breeze. In many ways, that’s true. Once you understand the

nature of Automation, and know how to tease information out of the Office

documentation, you’re ahead of the game.

But, there are some subtle variations (and some not so subtle) among the different

applications that means code that works in one application might not work in another. To

complicate matters further, while Word, Excel and PowerPoint have a lot in common,

Outlook is different than the others in many ways.

Getting started

The first major difference has to do with instances and creation. Excel and Word let you

create multiple instances, while PowerPoint and Outlook are restricted to single instances.

This has several implications. First, if you call CreateObject() more than once for Excel

or Word, you have more than one instance of the server running. However, with

PowerPoint and Outlook, all the object references refer to the same instance. More

significantly, if PowerPoint or Outlook is running before you call CreateObject(), the

function returns a reference to the running instance.

Not surprisingly, if you create an instance of PowerPoint or Outlook via Automation and

then start the same application through the Windows interface, there’s still only one

instance running. More surprisingly, that’s true for Word as well. Excel, on the other

hand, opens a separate instance in this situation.

Getting out

The differences continue when it comes to exiting the applications. When you shut down

Word, PowerPoint or Outlook, the executable is unloaded, but when you close Excel, the

executable stays in memory until you release the variable that held the reference. The

object reference is still good, and you can talk to a number of its properties.

This has an impact on the code you need to check for a valid object reference to the

server. For most of the Office servers, you can use code along these lines:

IF VARTYPE(oWord) = "O" AND TYPE("oWord.Name") = "C"

 * Server is running

ENDIF

But this code won’t work for Excel. The best solution I’ve found is to maintain an extra

property or variable to track Excel’s expected visibility and test whether expected

visibility matches actual visibility. (The issue is that, once you make Excel visible, a user

might shut it down. As long as you keep it invisible, your application controls its

existence and you don’t need to check whether your reference is valid, though a

sophisticated user might use the Task Manager to close the application.) In this code,

lShouldBeVisible is a variable; you could make it a property if you’re using a wrapper

around the Excel server. Any code that affects Excel’s visibility needs to set

lShouldBeVisible appropriately.

LOCAL lReturn

IF IsNull(oXL)

 * No instantiated server

 lReturn = .F.

ELSE

 * Compare actual Visible value to tracked visibility

 IF oXL.Visible = lShouldBeVisible

 * They match, so the server is open and good

 lReturn = .T.

 ELSE

 * Visibility doesn't match. User must have

 * shut server down.

 lReturn = .F.

 ENDIF

ENDIF

RETURN lReturn

Show me

If you’ve done much Automation work, you’ve undoubtedly learned that Automation

code runs faster when the server is invisible. However, keeping PowerPoint invisible can

be tricky. First, once you show PowerPoint by setting its Visible property to True, you

can’t hide it again. This command generates an error:

oPowerPoint.Visible = .F.

Second, a number of PowerPoint’s properties, including ActivePresentation, aren’t

accessible unless PowerPoint is visible. To address individual presentations with

PowerPoint hidden, you must use the Presentations collection.

What's in a template?

Another significant difference among the servers is the relationship of templates to

documents. In Excel and PowerPoint, creating a new document based on a template

simply makes a copy of the template as a starting point. In Word, a new document

contains copies of the template’s boilerplate text and styles, but retains a connection to

the template’s macros. This means that changes to the macro definitions in a Word

template affect documents based on that template. That’s not true for the other

applications.

Go away!
When an application automates Office, it’s not unusual to end up with abandoned

instances of the various Office servers. This can happen due to bugs in your code,

because of system problems, or for other reasons. Running a bunch of abandoned servers

in the background can destabilize Windows and eventually lead to a crash.

Thus, it’s handy to be able to search for and kill automation servers that aren’t in use.

While you can’t do this through the Automation interface (after all, if you had an object

reference to the server, you could simply call its Quit method), the Windows API

provides the tools you need.

There are three steps in solving the problem:

1. Find each instance of the application.

2. Check whether it’s visible.

3. If it’s not visible, stop it.

The usual way to find a running application is with the FindWindow API function. You

pass the window’s title and the function returns a handle to the window. For example, this

code finds the Calculator applet:

DECLARE LONG FindWindow IN WIN32API ;

 STRING lpClassName, STRING lpWindowName

nHandle = FindWindow(.NULL., "Calculator")

The problem with this approach is that you have to know the window’s title. For the

Office applications, that’s not simple as the window title changes based on the open

document.

Fortunately, there’s another way to get to windows. Rather than looking for a particular

window, it’s possible to cycle through the list of open windows and check each to see

whether it’s one we’re interested in. The main window for each running application is

considered a child window of the Windows desktop, so the solution is to get a reference

to the desktop and then look at its child windows. The GetDesktopWindow API function

returns a handle to the Windows desktop, while the GetWindow function lets you cycle

through all the child windows of a specified window. Here are the declarations:

DECLARE LONG GetDesktopWindow IN WIN32API

DECLARE LONG GetWindow IN WIN32API LONG hWnd, LONG wCmd

The parameters to GetWindow are the reference window and a number that indicates

which window to return. Pass the constant GW_CHILD (5) to return the first child

window of a window. Pass GW_NEXT (2) to get the next child; in this case, you pass the

child window you already have as the first parameter. Putting this together, this code gets

a reference to the desktop and then cycles through all its children:

#DEFINE GW_CHILD 5

#DEFINE GW_NEXT 2

lnDesktopHWnd = GetDesktopWindow()

lnHWnd = GetWindow(lnDesktopHWnd, GW_CHILD)

DO WHILE lnHWnd <> 0

 * Do something with the one you have here

 * Get the next one

 lnHWnd = GetWindow(lnHWnd, GW_NEXT)

ENDDO

Now that we can get a handle to each window, we need a way to check whether it’s the

main window of the application we’re interested in. It turns out that each application has

a class name that uniquely identifies it. For example, the class name for Word is

“OpusApp”; for Excel, it’s “XLMain” (which makes a lot more sense than Word’s). The

class name for PowerPoint depends on the version. For PowerPoint 2000, it’s

“PP9FrameClass”. For PowerPoint 2002 (XP), it’s “PP10FrameClass”.

The GetClassName function looks up the class name for a window. Here’s the

declaration:

DECLARE LONG GetClassName IN WIN32API ;

 LONG hWnd, STRING lpClassName, LONG nMaxCount

The first parameter is the window handle. The second parameter must be passed by

reference and holds the class name on return. The third parameter indicates the length of

the string passed as the second parameter. The function returns the length of the string

returned. Here’s an example call:

lcClass = SPACE(256)

lnLen = GetClassName(lnHWnd, @lcClass, LEN(lcClass))

lcClass = LEFT(lcClass, lnLen)

Once we find an instance of the server application, we want to check whether it’s visible.

If so, then the user can shut it down as needed. If not, we’ll shut it down. The

IsWindowVisible API function takes a window handle as a parameter and returns 0 if it’s

hidden. Here’s the declaration and call:

DECLARE LONG IsWindowVisible IN WIN32API LONG hWnd

lnIsVisible = IsWindowVisible(lnHWnd)

The last step in the process is to tell the application to shut down. The PostMessage API

function handles that task. It accepts four parameters, but only two are needed in this

case. (Pass 0 for the other two.) The first is the window handle and the second is the

message to the window. In this case, the message to pass is WM_CLOSE (0x10). Here’s

the declaration and an example call:

DECLARE LONG PostMessage IN WIN32API ;

 LONG hwnd, LONG wMsg, LONG wParam, LONG lParam

#DEFINE WM_CLOSE 0x10

PostMessage(lnHWnd, WM_CLOSE, 0, 0)

We can put all this together to create a function that receives the class name of the

application to shut down. Here’s the code for KillApp:

FUNCTION KillApp

*===

* Program: KillApp.PRG

* Purpose: Close any invisible instances of a specified program

* Author: Tamar E. Granor

* Copyright: (c) 2002 Tamar E. Granor

* Last revision: 04/16/02

* Parameters: tcClassName - the classname of the app to close

* Returns: Number of instances closed; -1, if parameter problems

*===

#DEFINE GW_CHILD 5

#DEFINE GW_HWNDNEXT 2

#DEFINE WM_CLOSE 0x10

LPARAMETERS tcClassName

ASSERT VARTYPE(tcClassName) = "C" AND NOT EMPTY(tcClassName) ;

 MESSAGE "KillApp: Must pass class name of application to kill"

IF VARTYPE(tcClassName) <> "C" OR EMPTY(tcClassName)

 ERROR 11

 RETURN -1

ENDIF

DECLARE LONG GetDesktopWindow IN win32api

DECLARE LONG GetWindow IN WIN32API LONG hWnd, LONG wCmd

DECLARE LONG IsWindowVisible IN WIN32API LONG hWnd

DECLARE LONG GetClassName IN WIN32API LONG hWnd, STRING lpClassName,

LONG nMaxCount

DECLARE LONG PostMessage IN WIN32API LONG hwnd, LONG wMsg, LONG wParam,

LONG lParam

LOCAL lnDesktopHWnd, lnHWnd, lnOldHWnd, lcClass, lnLen, nClosedCount

lnDesktopHWnd = GetDesktopWindow()

lnHWnd = GetWindow(lnDesktopHWnd, GW_CHILD)

lnClosedCount = 0

DO WHILE lnHWnd <> 0

 lcClass = SPACE(256)

 lnLen = GetClassName(lnHWnd, @lcClass, 256)

 lnOldHWnd = lnHWnd

 lnHWnd = GetWindow(lnOldHWnd, GW_HWNDNEXT)

 IF UPPER(LEFT(lcClass, lnLen)) = UPPER(tcClassName)

 lnVisible = IsWindowVisible(lnOldHWnd)

 IF lnVisible = 0

 PostMessage(lnOldHWnd, WM_CLOSE, 0, 0)

 lnClosedCount = lnClosedCount + 1

 ENDIF

 ENDIF

ENDDO

RETURN lnClosedCount

If you regularly need to shut down a particular application, you can write a simple

function that calls KillApp, passing the right class. For example, this function deals with

instances of Word:

FUNCTION KillWord

*===

* Program: KILLWord.PRG

* Purpose: Close any invisible instances of Microsoft Word

* Author: Tamar E. Granor

* Copyright: (c) 2002 Tamar E. Granor

* Last revision: 05/10/2002

* Parameters: (None)

* Returns: Number of instances closed

*===

LOCAL lnKilled

lnKilled = KillApp("OpusApp")

RETURN lnKilled

For PowerPoint, you might choose to call KillApp with the class name for each version,

so you don’t have to worry about which version is installed. Finally, if you’re interested

in shutting down abandoned instances of all of the Office applications, you could use a

function like this:

FUNCTION KillOfficeApps

*===

* Program: KILLOfficeApps.PRG

* Purpose: Close any invisible instances of Microsoft Word,

* Excel, and PowerPoint 2000

* Author: Tamar E. Granor

* Copyright: (c) 2002 Tamar E. Granor

* Last revision: 05/10/2002

* Parameters: (None)

* Returns: Number of instances closed

*===

LOCAL lnTotalKilled, lnKilled, aAppsToKill[3], lnPos

aAppsToKill[1] = "OpusApp" && Word

aAppsToKill[2] = "XLMain" && Excel

aAppsToKill[3] = "PP9FrameClass" && PowerPoint 2000

lnTotalKilled = 0

FOR lnPos = 1 TO ALEN(aAppsToKill, 1)

 lnKilled = KillApp(aAppsToKill[lnPos])

 lnTotalKilled = lnTotalKilled + lnKilled

ENDFOR

RETURN lnTotalKilled

The materials for this session include KillApp.PRG, which contains the KillApp function,

as well as several application-specific functions.

A number of web articles list class names for various applications. Since websites change

often, rather than listing specific articles here, I recommend searching for “class name”

with “OpusApp”.

Can you spell that for me?
There are often situations where it would be useful to have the ability to check spelling in

an application, but VFP doesn’t include a spelling checker. (There was a spelling checker

application included with some versions of VFP, but it couldn’t be distributed with

executable applications.) There are some third-party tools available, but if you know your

users will have Office installed, you can build your own using Office’s spelling tool.

The Office spelling engine can’t be used as a stand-alone product, only from within the

other Office tools. (This is both a license issue and a technical issue.) So, you need to

check spelling using either Word or Excel, both of which expose spelling functionality.

Word’s implementation is easier to automate and offers more functionality.

There are two ways to check spelling in Word. The CheckSpelling method of the

application object accepts a string parameter and returns True or False to indicate whether

the string passes the spelling check. So, if all you need is an indicator, code like this will

work:

cString = "This is the string to chek."

oWord = CreateObject("Word.Application")

lIsCorrect = oWord.CheckSpelling(cString)

If you want recommendations on solving the problem, this approach is too simplistic.

Instead, use the GetSpellingSuggestions method of the Application object. The method

accepts a single word and populates a SpellingSuggestions collection with

recommendations for fixing it. This approach requires at least one document to exist,

though it can be empty. Here’s an example:

cWord = "chek"

oWord = CreateObject("Word.Application")

oWord.Documents.Add()

oSuggestions = oWord.GetSpellingSuggestions(cWord)

To check a whole string, you can break it into words and pass each word in turn to the

method, saving the returned results. I created a class called WordUtils (included in the

materials for this session) with a CheckSpelling method. The class has three custom

properties:

 oWord contains an object reference to Word.

 aSuggestions is an array property containing all the suggestions returned from the

most recent spelling check.

 nSuggestions contains the total number of suggestions (the number of rows in

aSuggestions).

The class also contains a method called CheckWord that ensures Word is running.

Here’s the CheckSpelling method. This version works in VFP 7 and later. If you know

you’ll be using it only in VFP 8 and later, you might choose to change the aSuggestions

array to a collection. To use it in VFP 6 and earlier, the code that breaks the string into

words must be rewritten. It currently uses the GetWordCount() and GetWordNum()

functions introduced in VFP 7; the FoxTools library offers alternate versions of these for

earlier versions. (A few other syntactical changes are needed in VFP 6 and earlier.)

*===

* Program: CheckSpelling

* Purpose: Use Word's spelling engine to check a string

* Author: Tamar E. Granor

* Copyright: (c) 2002 Tamar E. Granor

* Last revision: 02/15/02

* Parameters: cString - the string to be checked

* Returns: .T. if no spelling errors were found

* .F. if there were spelling errors or problems

* with params

*===

LPARAMETERS cString

ASSERT VARTYPE(cString) = "C" ;

 MESSAGE "SpellCheck: First parameter (cString) must be character"

IF VARTYPE(cString) <> "C"

 ERROR 11

 RETURN .f.

ENDIF

LOCAL lReturn, nWords, nWord

LOCAL oSuggestions as Word.SpellingSuggestions

LOCAL oSuggestion as Word.SpellingSuggestion

DIMENSION This.aSuggestions[1]

This.aSuggestions[1] = ""

This.nSuggestioncount = 0

IF EMPTY(cString)

 lReturn = .t.

ELSE

 IF This.CheckWord()

 WITH This.oWord

 .Documents.Add()

 lReturn = .T.

 nWords = GETWORDCOUNT(cString)

 nSuggCount = 0

 FOR nWord = 1 TO nWords

 cWord = GETWORDNUM(cString, nWord)

 oSuggestions = .GetSpellingSuggestions(cWord)

 IF oSuggestions.Count <> 0

 lReturn = .F.

 * Parse the list and put into the array

 FOR EACH oSuggestion IN oSuggestions

 This.nSuggestionCount = This.nSuggestionCount + 1

 DIMENSION This.aSuggestions[This.nSuggestionCount, 3]

 This.aSuggestions[This.nSuggestionCount, 1] = nWord

 This.aSuggestions[This.nSuggestionCount, 2] = cWord

 This.aSuggestions[This.nSuggestionCount, 3] = ;

 oSuggestion.Name

 ENDFOR

 ENDIF

 ENDFOR

 ENDWITH

 ELSE

 lReturn = .F.

 ENDIF

ENDIF

RETURN lReturn

The class also contains code in the Destroy method to shut down the Word instance. As

written, the class opens Word once and keeps it open. This means that the first spelling

check may be a little slow, but after that, it should be fast. Here’s an example of using the

class:

cString = "This is the string to chek"

oSpeller = NewObject("cusSpellCheck", "WordUtils")

IF NOT oSpeller.CheckSpelling(cString)

 * Do something about misspellings

ENDIF

The materials for this session include a form (Spelling.SCX) that demonstrates the use of

the spelling class.

Outlook is different
Despite their many differences, automating one of Word, Excel or PowerPoint is pretty

much like automating the others. Although Outlook is a member of Office, it works

differently in many ways. The most significant is in working with Outlook’s collections.

In the other Office applications, it doesn’t matter whether you work with a collection

directly through its owner or save a reference to a local variable—the results are the same

(though the local variable can speed things up). In Outlook, that’s not necessarily true.

When you refer to a collection in Outlook, internally, a copy of the collection is made and

a reference to it returned. This means that any changes you make happen on the copy, not

the original. If you then look at the original, you won’t see your changes. For example,

consider this code:

oOutlook = CreateObject("Outlook.Application")

oNS = oOutlook.GetNameSpace("MAPI")

* Get tasks

oFolder = oNS.GetDefault(13)

FOR EACH oItem IN oFolder.Items

 ?oItem.Subject

ENDFOR

* Now sort it

oFolder.Items.Sort("Subject")

FOR EACH oItem IN oFolder.Items

 ?oItem.Subject

ENDFOR

When you run this code, the list prints out in the same order each time. That’s because the

Items collection is copied when it’s referenced, and the Sort method is applied to the

copy. To make this code work, you have to save the sorted copy and traverse it, like this:

oOutlook = CreateObject("Outlook.Application")

oNS = oOutlook.GetNameSpace("MAPI")

* Get tasks

oFolder = oNS.GetDefault(13)

* Now sort it

oItems = oFolder.Items

oItems.Sort("Subject")

FOR EACH oItem IN oItems

 ?oItem.Subject

ENDFOR

Working with document properties
All of the Office applications offer properties for their documents and let you define

custom properties. In Word, Excel and PowerPoint, the Properties dialog shows both

built-in and custom properties. In Outlook, properties show up in various places,

depending on the type of item.

For Automation purposes, Word documents, Excel workbooks and PowerPoint

presentations all have two properties, BuiltinDocumentProperties and

CustomDocumentProperties, which point to DocumentProperties collections. The two

DocumentProperties collections contain DocumentProperty objects. Both the

DocumentProperties collection and the DocumentProperty object are Office objects, so

documentation is found in the “Microsoft Office Visual Basic Reference” section of the

various Help files.

The various item objects in Outlook each have a UserProperties collection, which is

based on a different object than DocumentProperties. However, it’s still possible to add

properties and to check the values of existing properties.

Why would you want to work with these collections? For a variety of reasons. For the

applications other than Outlook, BuiltinDocumentProperties is where you find

information like the author, the time the document was created, the subject, and so forth.

Custom properties let you add information, for example, to identify documents created by

your application.

Reading and changing the built-in document properties is a little tricky. The properties

themselves are objects, so you have to look at the Value property of a document property

to see what it contains. For example, to check the title of a Word document accessed

through oDocument, you can use:

#DEFINE wdPropertyTitle 1

cTitle = oDocument.BuiltinDocumentProperties(wdPropertyTitle).Value

or you can break it into two steps:

oTitleProp = oDocument.BuiltinDocumentProperties(wdPropertyTitle)

cTitle = oTitleProp.Value

To change a built-in property, assign a new value to the Value property (though some are

read-only). For example, to set the author of an Excel workbook accessed through

oWorkbook, use:

oWorkbook.BuiltinDocumentProperties("Author").Value = cAuthor

Again, if you prefer, you can do it in two steps:

oAuthorProp = oWorkbook.BuiltinDocumentProperties("Author")

oAuthorProp.Value = cAuthor

To add a property to a Word, Excel or PowerPoint document, use the Add method of the

CustomDocumentProperties collection. To add a property and specify its value, you need

the first four parameters to this method. The first parameter is the property name, the third

is the type, and the fourth is the value. Pass .F. for the second parameter. For example, to

add a property called iDocumentID to a Word document and set its value to the variable

m.iID, use code like this:

#DEFINE msoPropertyTypeNumber 1

oDocument.CustomDocumentProperties.Add(;

 "iDocumentID", .F., msoPropertyTypeNumber , m.iID)

Custom properties added in this way show up on the Custom page of the Properties

dialog for the document.

Once you’ve added properties, you probably want to be able to read them by Automation,

as well. Unfortunately, there’s no direct way to check whether a particular property exists.

You have to use the brute force approach:

lFound = .F.

FOR EACH oProp IN oDocument.CustomDocumentProperties

 IF UPPER(oProp.Name) == "IDOCUMENTID"

 * Found it. Get out of here

 lFound = .T.

 EXIT

 ENDIF

ENDFOR

IF lFound

 iDocID = oProp.Value

ENDIF

For Outlook, you do things similarly, but not quite the same. To add a custom property to

an item, use the Add method of the UserProperties collection. Two parameters are

required: the name of the property and its type. The value is set separately. For example,

to add a property to a contact item referenced through oContact, you’d use code like this:

#DEFINE olText 1

oContact.UserProperties.Add("AIMName", olText)

oContact.UserProperties("AIMName").Value = "TeddyBear"

By default, when you add a custom property to an item, all items of that type get the new

property. (In the example above, every contact gets an AIMName property.) The Add

method takes an additional parameter to turn that feature off. Pass .F. for the third

parameter to indicate that this property should be added only to this item.

You don’t need brute force to check for a custom property in Outlook. The Find method

of the collection searches for a specified property and returns it as an object, if it’s there.

For example:

oAIMName = oContact.Find("AIMName")

IF VARTYPE(oAIMName) <> “X”

 cAIMName = oAIMName.Value

ENDIF

Responding to Office events
While most Automation code simply issues commands to the various Office applications

to create, edit, parse or print documents, at times, you need to respond to things that

happen in the server application. For example, when automating Outlook, you might

present the user with the bare bones of a mail message and allow him to complete it.

When the user saves the message, you want your application to do something. In one

application I worked on, all documents were tracked in a VFP database and each time a

user finished working with a document, we logged the user’s name and the time.

There are two approaches to dealing with Office events. The first is useful only when you

know that your VFP application will be running when the user is working in Office. The

second can be used with no VFP application running, as well.

Binding server events with EventHandler()

The first solution uses the EventHandler() function added in VFP 7. To use this approach,

you need to create a class that implements the appropriate interface of the server

application. An interface is a set of methods defined by a server. Implementing an

interface means providing code for those methods. It’s similar to inheriting from a class,

but the class that implements an interface doesn’t execute any code from the original

class. In addition, you can implement an interface written in a different language. The

IMPLEMENTS keyword was added to DEFINE CLASS in VFP 7.

How do you know what interface you need to implement? The Object Browser lets you

explore the interfaces of an Automation server. Open the appropriate type library and

expand the Interfaces node to see all the interfaces supported. Table 1 shows the main

interface that contains events you can respond to for each of the Office servers. (Some of

the applications have more than one interface containing events.)

Table 1. The various Office servers each support one or more interfaces that let you

respond to events. The principal interface for each application is shown here.

Server Interface Methods

Excel AppEvents NewWorkbook, SheetActivate, SheetBeforeDoubleClick,

SheetBeforeRightClick, SheetCalculate, SheetChange,

SheetDeactivate, SheetFollowHyperlink,

SheetSelectionChange, WindowActivate,

WindowDeactivate, WindowResize, WorkbookActivate,

WorkbookAddinInstall, WorkbookAddinUninstall,

WorkbookBeforeClose, WorkbookBeforePrint,

WorkbookBeforeSave, WorkbookDeactivate,

WorkbookNewSheet, WorkbookOpen

Outlook ApplicationEvents ItemSend, NewMail, OptionsPagesAdd, Quit, Reminder,

Startup

PowerPoint EApplication NewPresentation, PresentationClose,

PresentationNewSlide, PresentationOpen,

PresentationPrint, PresentationSave, SlideShowBegin,

SlideShowEnd, SlideShowNextBuild,

SlideShowNextSlide, WindowActivate,

WindowBeforeDoubleClick, WindowBeforeRightClick,

WindowDeactivate, WindowSelectionChange

Word ApplicationEvents2 DocumentBeforeClose, DocumentBeforePrint,

DocumentBeforeSave, DocumentChange,

DocumentOpen, NewDocument, Quit, WindowActivate,

WindowBeforeDoubleClick, WindowBeforeRightClick,

WindowDeactivate, WindowSelectionChange

Once you’re looking at the right interface in the Object Browser, you can expand its

Methods node to see the supported events. Figure 1 shows the Word ApplicationEvents2

interface expanded in the Object Browser.

Figure 1. The Object Browser lets you explore the interfaces supported by a server.

You can drag an interface to a code window to create a class that implements the

interface.

The Object Browser does more than just let you find out what interfaces are available and

what methods they support. Drag an interface to an editing window (MODIFY

COMMAND) and a class is defined that implements that interface. For example, if you

drag Word’s ApplicationEvents2 interface to a code window, this code is generated. (The

code here has been slightly reformatted to fit the page.)

x=NEWOBJECT("myclass")

DEFINE CLASS myclass AS session OLEPUBLIC

 IMPLEMENTS ApplicationEvents2 IN ;

 "c:\program files\microsoft office\office\msword9.olb"

 PROCEDURE ApplicationEvents2_Quit() AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_DocumentChange() AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_DocumentOpen(Doc AS VARIANT) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_DocumentBeforeClose(Doc AS VARIANT, ;

 Cancel AS LOGICAL) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_DocumentBeforePrint(Doc AS VARIANT, ;

 Cancel AS LOGICAL) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_DocumentBeforeSave(Doc AS VARIANT, ;

 SaveAsUI AS LOGICAL, Cancel AS LOGICAL) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_NewDocument(Doc AS VARIANT) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_WindowActivate(Doc AS VARIANT, ;

 Wn AS VARIANT) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_WindowDeactivate(Doc AS VARIANT, ;

 Wn AS VARIANT) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_WindowSelectionChange(Sel AS VARIANT) ;

 AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_WindowBeforeRightClick(Sel AS VARIANT, ;

 Cancel AS LOGICAL) AS VOID

 * add user code here

 ENDPROC

 PROCEDURE ApplicationEvents2_WindowBeforeDoubleClick(Sel AS VARIANT,;

 Cancel AS LOGICAL) AS VOID

 * add user code here

 ENDPROC

ENDDEFINE

To create an event handler, put code in the methods for the events you want to handle. Do

not delete the other methods. For a class to implement an interface, every method of the

interface must be included.

It’s a good idea to change the reference to the class in the IMPLEMENTS line. The

Object Browser generates a reference to the type library, including the path. If your event

handler will be used on more than one machine, the path may be wrong. It’s better to use

the application’s ProgID (such as “Excel.Application”). Unfortunately, Word doesn’t

support using the ProgID; in that case, your best bet is to use Word’s GUID followed by

version information, like this:

IMPLEMENTS applicationevents2 in ;

 {00020905-0000-0000-C000-000000000046}#8.1

You probably want to change the name of the class, as well.

Once you’ve defined the event handler class, you can bind it to an instance of the server

using the EventHandler() function. This example binds the class shown above to a Word

instance.

oWord = CreateObject("Word.Application")

oHandler = CreateObject("MyClass")

EVENTHANDLER(oWord, oHandler)

The bindings last as long as the objects involved stay in scope. Alternatively, you can

unbind the handler from the server by calling EventHandler() again and passing .T. for

the optional third parameter.

The session materials include a class (OfficeEventHandler9.PRG) that implements the

principal interfaces of Word, Excel and PowerPoint. For each, it logs opening, closing,

saving and creating a new document to a table. The materials also include a form

(OfficeEvents9.SCX) to open the servers and display the log. (VFP 8 has a bug that

prevents you from implementing the Excel and PowerPoint interfaces with a single class.

The conference materials include VFP 8 versions, OfficeEventHandler.PRG and

OfficeEvents.SCX, that work around the bug. Unfortunately, the result is far more

complex code for instantiating and keeping track of the event handlers.)

Binding server events with an add-in

The second approach is more complicated. It requires VBA code to create what’s known

as an add-in and a VFP COM object to be used by the add-in. It’s useful when you can’t

be sure that VFP will be running at the time the server event occurs.

An add-in is a special document in Word, Excel or PowerPoint that contains code. (While

Outlook also supports add-ins, the mechanism is different enough that it’s not discussed

here.) Add-ins can be loaded interactively or via Automation.

An event handler add-in needs two components. There’s a class that contains the actual

event handling code, plus separate code to connect the event handler class to the

application object (just as EventHandler() does in the VFP example). Both of these pieces

are written in Visual Basic for Applications (VBA) using the Visual Basic Editor (VBE),

which is available in all of the Office applications. While the particulars, especially the

event methods available, vary from one Office server to the next, the general structure is

the same for each.

Creating an add-in

To create an add-in, create a new, blank document in the server application and then open

the VBE by choosing Tools | Macro | Visual Basic Editor from the menu. The first step in

the VBE is to create the event handler class. To do so, make sure the Project Explorer is

open. It’s normally docked on the left-hand side of the VBE underneath the menu. If it’s

not open, use View | Project Explorer to open it. Right-click on the project for your

document and choose Insert | Class Module. Figure 2 shows the Project Explorer in Word

after adding the new class module.

Figure 2. The Project Explorer provides an overview of your VBA project. Here, the

class module for the event handler has been added.

When you add the class module, a code window opens to hold code for that module.

That’s where the event handler code goes.

Before starting to write code, it's a good idea to rename the event class. Click on the new

class module in the Project Explorer. Then, in the Properties window (normally docked

below the Project Explorer), click into the Name property and give your class a

meaningful name, like EventHandler.

To create an event handler for one of the Office servers, you need an object reference to

the application object. To add one, declare a property to hold the reference. Switch to the

code window, making sure the dropdowns show "(General)" and "(Declarations),"

respectively, and type this code:

Public WithEvents WordApp As Application

The WithEvents keyword lets the object respond to events. Once you've completed this

line and pressed Enter, the dropdowns at the top of the code window change. The left-

hand dropdown, which shows the available objects, now includes your application

property as in Figure 3. When you choose the property in the left-hand dropdown, the

right-hand dropdown (Figure 4) is populated with the events to which your code can

respond.

Figure 3 Once you declare a variable to hold the application object, that object is

accessible in the code window.

Figure 4 When you choose the application property from the objects dropdown, the

right-hand dropdown shows the list of available events.

When you choose an event from the right-hand dropdown, stub code for that event is

inserted into your code window. (In Figure 4, you can see the stub for the Quit event.)

Choose each event for which you want to write code from the events dropdown and add

the VBA code that should run in response to that event. For example, this code responds

to the NewDocument and DocumentBeforeClose events, in both cases displaying a

message box that tells the user what’s going on.

Public WithEvents WordApp As Application

Private Sub WordApp_DocumentBeforeClose(_

 ByVal Doc As Document, Cancel As Boolean)

MsgBox ("About to close " & Doc.FullName)

End Sub

Private Sub WordApp_NewDocument(ByVal Doc As Document)

MsgBox ("New document opened")

End Sub

Next, you need to connect the actual application object to the defined object reference

property (WordApp, in the example). Add a module (not a class module) to the project.

Right-click on the project in the Project Explorer and choose Insert | Module. As before,

rename the new module by choosing it in the Project Explorer and changing the Name

property in the Properties window. (I call mine "CatchWord".)

In this new module, declare a variable as a new instance of the event handler class you

just created:

Dim cWordHandler As New EventHandler

Add a method whose sole purpose is to connect the application property of the event

handler to the application object. I call it HandleEvents. Here's the Word version of the

code:

Sub HandleEvents()

Set cWordHandler.WordApp = Application

End Sub

Next, we need a way to make this code run every time the add-in is loaded. While each of

the applications has an event that fires automatically when a document or the application

is opened, those events behave differently in different circumstances. (For example, Word

doesn't run its AutoExec method when Word was started by automation.) So it’s better to

use code to explicitly run HandleEvents after loading the add-in. That code is included in

“Loading the Add-in” below.

The document now has everything it needs to handle events. Next, save it as an add-in.

The technique varies with the application. In all cases, though, switch back to the main

application (rather than the VBE) before choosing Save As.

For Word, simply save the document as a template. If you store it in Word's startup folder

(as specified on the File Locations page of Word's Options dialog), the add-in loads

automatically each time you start Word. Alternatively, you can store it elsewhere and load

it manually or via Automation each time you want it.

With Excel and PowerPoint, you need to save the document twice because you can't open

an add-in directly for editing. First, save it as the native format for the application (.XLS

for Excel, .PPT for PowerPoint), then use Save As to save it again as an add-in. If you

need to modify it later, open the native format version, make the changes, then save it

both in the native format and as an add-in.

To save as an add-in in Excel, choose "Microsoft Excel Add-In (*.xla)" from the "Save as

type:" dropdown. Once you make this choice, the dialog switches to the AddIns directory

for the current user. Saving your add-in in that directory puts it on the list of add-ins

available from Excel's Add-Ins dialog, but doesn't automatically enable it. You have to

enable it in that dialog or via Automation. If you save it elsewhere, you can load it using

the Add-Ins dialog or via Automation. (If you save it in the user's XLStart directory, it’s

loaded automatically.)

Saving an add-in in PowerPoint is pretty much the same as for Excel. Once you've saved

the presentation, use File | Save As and choose "PowerPoint Add-In (*.ppa)." Again, the

dialog switches to the AddIns directory. However, saving your add-in there doesn't have

any special advantages except that the dialog for loading an add-in defaults to looking in

that directory. Regardless of where it's saved, you can load an add-in through the Add-Ins

dialog or via Automation.

Loading the add-in

There are several ways to get your add-in running. In general, it's a two-step process.

First, add-ins need to be "registered" to make the application aware of them. Once

registered, an add-in can be loaded to get it running. In some cases, you can do both steps

at once.

You get the most control by using Automation code to load your add-ins. Each of the

servers has an AddIns collection with an Add method. The exact behavior of the Add

method varies, however, and, in Excel, using AddIns.Add isn't the best choice.

The Add method of Word’s AddIns collection both registers and loads the add-in. All you

need to do afterward is run the HandleEvents method to create the connection to the

application object:

oWord = CreateObject("Word.Application")

oWord.AddIns.Add("WordEventHandler.DOT") && Add path

oWord.Run("HandleEvents")

In PowerPoint, the Add method registers the add-in, and you set the Loaded property to

True to load it. Then run the HandleEvents method to create the connection.

oPPT = CreateObject("PowerPoint.Application")

oAddIn = oPPT.AddIns.Add("PPTEventHandler") && Add path

oAddIn.Loaded = .T.

oPPT.Run("HandleEvents")

Excel doesn't let you register and load an add-in with AddIns.Add unless there's an open

workbook. In addition, when you leave an add-in loaded when Excel closes, the next time

you run Excel, the add-in shows as installed, but doesn't actually get properly loaded. A

better approach with Excel is to open the add-in with the Workbooks.Open method. That

registers and loads the add-in cleanly. As with the others, you then need to run the

HandleEvents method.

oXL = CreateObject("Excel.Application")

WITH oXL

 * Add path in next line

 oWorkbook = .Workbooks.Open("ExcelEventHandler.XLA")

 .Run("HandleEvents")

ENDWITH

Add-ins for Word, Excel and PowerPoint that log creation, opening, saving and closing of

documents to a VFP table are included in the session materials.

Talking to VFP via a COM object

The final piece of this approach is a way to communicate with FoxPro. Depending what

you want, there are a couple of possibilities. The VBA code can use ADO to update VFP

data directly. Alternatively, the VBA code can instantiate a VFP COM object. We’ll look

at the second method here.

To create a COM object in VFP, you need a class defined as OLEPUBLIC, and a project

containing the class. In the class, put methods for whatever should be done when the

Office events fire. My experience is that it’s best to have very granular methods, each

performing a single, fairly simple task. In one application, I used one method to update a

document log to indicate that the specified document was edited. That application used a

semaphore locking scheme for the documents (to allow only one user to edit a document

at a time), so another method released the semaphore lock when the document was

closed.

The Session class is designed to be used for COM objects; it’s extremely lightweight. The

downside is that Session classes can’t be created in the Class Designer; you have to write

code in a PRG file.

One thing you probably want in all COM objects is some kind of error handler. Since

most COM objects can't have a user interface, a good way to deal with errors is to log all

relevant information to a text file (or a table). In the example here, the Error method

handles any errors. If your COM object calls on other objects or outside code, and you

want unified error handling, you're better off using ON ERROR to set up a global error

handler. (Of course, an ON ERROR handler won't be called by any object that has its own

error handling code.)

Here's a simple class (OfficeResponder.PRG in the session materials) that has one

method to update a log table. The Init method ensures that the log table exists.

DEFINE CLASS OfficeResponder AS Session OLEPUBLIC

* COM server to be called in response to Office events.

PROTECTED cLogTable, cLogPath, cLogFullPath

cLogTable = "OfficeLogFromAddIn.DBF"

PROTECTED PROCEDURE Init

* Set up

This.cLogPath = SYS(2023)

This.cLogFullPath = FORCEPATH(This.cLogTable, ;

 This.cLogPath)

* Make sure the log table exists

IF NOT FILE(This.cLogFullPath)

 CREATE TABLE (This.cLogFullPath) ;

 (cDocument C(60), cAction C(12), tModified T)

 CLOSE TABLES

ENDIF

SET EXCLUSIVE OFF

RETURN

ENDPROC

PROCEDURE UpdateLog(cDocument as String, cAction as String) as Boolean

* Update the activity log

IF VARTYPE(cDocument) <> "C" OR EMPTY(cDocument)

 ERROR 11

 RETURN .F.

ENDIF

IF VARTYPE(cAction) <> "C" OR EMPTY(cAction)

 ERROR 11

 RETURN .f.

ENDIF

INSERT INTO (This.cLogFullPath) ;

 VALUES (m.cDocument, m.cAction, DATETIME())

RETURN .t.

ENDPROC

PROCEDURE Error(nError, cMethod, nLine)

LOCAL lcErrorMsg, lcFileName

lcErrorMsg = "Error " + TRANSFORM(nError) + SPACE(1) + ;

 CHR(13) + CHR(10) + ;

 "Method " + cMethod + SPACE(1) + ;

 CHR(13) + CHR(10) + ;

 "Line " + TRANSFORM(nLine) + SPACE(1) + ;

 CHR(13) + CHR(10)+ ;

 "At " + TRANSFORM(DATETIME())

**

* Dump an error log into the specified directory

**

lcFileName = FORCEPATH("OfficeResponder.ERR", ;

 This.cLogPath)

STRTOFILE(lcErrorMsg, lcFileName, .T.)

LIST MEMORY TO FILE (lcFileName) ADDITIVE noconsole

LIST STATUS TO FILE (lcFileName) ADDITIVE noconsole

RETURN

ENDPROC

ENDDEFINE

To turn the class into a COM object, create a project (also called OfficeResponder in the

example and included in the session materials), add the class to it, and build a .DLL COM

server. The resulting .DLL file contains the COM object.

To use the COM object from the Office event handler code (that is, in VBA code),

declare an appropriate variable, then use CreateObject() to instantiate the server. Call its

methods as needed, and when you're done, set the object variable to Nothing (VBA's

version of .null.) to release the server.

In this example (from WordLogger.DOT in the session materials), Word's

DocumentBeforeClose method instantiates the OfficeResponder object and calls the

UpdateLog method:

Private Sub wordapp_DocumentBeforeClose(ByVal Doc As Document, Cancel As

Boolean)

Dim oVFPResponder, lResult As Boolean

Set oVFPResponder = CreateObject("OfficeResponder.OfficeResponder")

lResult = oVFPResponder.UpdateLog(Doc.FullName, "Closed")

Set oVFPResponder = Nothing

End Sub

In Excel, if you load the add-in as described above, the WorkbookBeforeClose code fires

when you close the workbook that contains the add-in (such as when you close Excel), so

you'll get a record in the log for the add-in itself.

Make sure that your main VFP application registers and loads the appropriate add-in at

the same time that it instantiates each of the Office applications.

Summing Up
The Office servers are remarkably capable. Learning to do more than just create

documents, format them, print them and save them will give you tremendous possibilities

for application development.

Thanks to Ted Roche and John Hosier, who helped me develop some of the ideas here,

and to my Advisor Answers co-columnists, Christof Lange and Pamela Thalacker, who

reviewed some of this material in an earlier form.

Copyright, 2004, Tamar E. Granor, Ph.D.

